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1 Abstract
Usual dynamic analysis techniques express structure
deformation in a new base of rigid modes and elastic
modes. Each mode is characterised by a modal mass
and effective masses associated to different
directions. The normalisation of these modes is
arbitrary, this imply that they have no physical
meaning when considered alone. On the other hand,
the effective mass has a physical meaning and allow,
in a lot of cases, simplification of the computation of
deformations and stresses. They allow a trade-off of
useful modes and simple computations on complex
structures.
Indeed, each mode can be interpreted as a mass-
spring-dashpot system oriented in the rigid modes
space along a specific direction. The mass in this
case is the effective mass. An elastic mode will be
excited by a junction degree of freedom (dof)
acceleration {a> if the projection of {a> along the
mode specific direction is non-null. When a force is
applied on the internal dof's, each elastic mode will
be excited by the projection of the force on this
mode. Moreover, the reaction at the junction dof
implied by a mode will have a direction parallel to
the mode specific direction.
This paper outlines the real representation that can be
attributed to the effective masses and to these
directions. A new normalisation of these modes is
proposed in order to give them a physical
significance. We introduce also modal stresses to
allow easy computation of dynamic stresses.

2 Introduction
The use of modal analysis for structure analysis leads
to very interesting and useful results. Nevertheless,
for large structures or to obtain important accuracy,
the necessary computation time is very important.
A better understanding of the representation by
modes can improve the analysis by a better selection
of the useful modes and a better estimation of the
results expected [1], [2], [3], [5].
In this paper, a new representation of matrices and
vectors is proposed. Explanations are proposed in
appendix (§9.1)

3 Reminder of modal analysis
The equation we want to solve is equation (1).
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Commonly, we define a base of modes. Some of
them are considered as rigid modes as they imply no
structure deformation (in isostatic or rigidly mounted
cases). As a normalisation, the displacement of the
degrees of freedom (dof) corresponding to junction
nodes are set to one in these modes. We consider
here applications where the support is infinitely rigid
or isostatic. In those cases, the rigid modes (m = 6)
will be defined as [φ} = - [K]-1[K} if [K]-1 exists. In
this case, we can also observe that {K}-{K][K]-1[K}
is null. The rigid modes can be written as (2),
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with {I} = {diag (...1… )}.
The elastic modes [φ>> can be extracted from
equation (3):

(3) [ [–diag(ω k²)][M] + [K] ] [φ»= 0
k = 1,2,… n

The normalisation of these modes is arbitrary. For
each mode we associate a frequency (3), a modal
mass (4), a modal stiffness (5), a modal structural
damping (ε k = ck/2mkω k) and a vector linking this
mode to the rigid modes (6).

(4) mk = <φk] [M] [φk>

(5) kk = <φk] [K] [φk>

(6) {Lk > = { φ | M | φk >
The resolution of the equation using these
parameters gives the following results.

(7) [q0> = [ [φ}+[φ»«diag(… ω ²Hk/kk… )»«L}  }{q0>
                + [φ»«diag(… Hk/kk… )»«φ] [F0>
and

(8) {R0> = {-{L»«diag(… ω ²Hk/kk… )»«φ] – {φ]][F0>
                      + { -ω ²{L»«diag(… ω ²Hk/kk… )»«L}
                       - ω ²{φMφ} + {φKφ}  } {q0>
with the dynamic amplification factor (here written
Hk),
(9) 
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In (7), the first term [φ} {q0> represents the rigid
displacement; the second term represents the
displacement due to junction dof displacement and
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the third term represents the displacement due to the
forces applied to the internal dof. In (8), the first
term represents the reaction forces due to the force
applied to the internal dof, the second term
represents the reaction forces due to the junction dof
displacement.
Within the parameters, the frequency and the
damping are independent of the mode normalisation
and thus are the only parameters that have a physical
significance.
By combining them, we can define one effective
mass matrix for each mode (10).
(10) {Mk} = {Lk> 1/mk <Lk}

k = 1,2,… n
These matrices are now independent of modal
normalisation and have a physical significance. By
definition, only 6 elements of this matrix are
independent, the elements outside main diagonal
being a combination of the diagonal ones. There is
also only one non null eigenvalue with one
corresponding eigenmode. This eigenvalue is the
trace of the matrix, the mode is parallel to vector
{Lk>.
The main difficulty of this approach is the fact that
the mass matrix combines different kinds of
elements: mass ones (expressed in kg) and inertia
ones (expressed in kg.m²). As a result, the modal
mass, the effective mass, …  are also combinations of
mass and inertia.
In order to avoid this problem, we will assume that
the modes have units: displacements in meters and
rotations in radians. By this way, the modal masses
as well as the effective mass matrices components
are all expressed in kg.m².

4 Effective parameters
Let's define the effective mass meff,k as the
eigenvalue of the effective mass matrix. We propose
to modify the modes normalisation in order that the
norm of {Lk> equals meff,k.
The solution is to multiply all modes by the square
root of the effective mass divided by the modal mass.

(11) [φeff,k> = [φe,k> . 
k

k,eff

m

m

This will result in a new set of modes with modal
masses equal to effective masses, {Lk> vector as a
norm of meff,k and a direction parallel to the direction
of the eigenmode of the kth effective mass matrix and
a new modal stiffness appears that will be called
effective stiffness (12).

(12) keff,k =  meff,k . ω k²
Those new modes are called effective modes.

5 Resolution of equations with this
new base

5.1 Imposed acceleration along junction dof
When the  {a0> acceleration is imposed at the
junction dof, from equation (8), we can extract the
unknown junction reaction {R0>:
(13) { { { }{ >+>αω=> ∑ 0

k
k,eff0alk,effk0 aMBla.m)(TR

k

where a0 is the acceleration vector norm, {leff,k> is
the unitary vector in direction {Leff,k>,  α alk is the
cosine of the angle between acceleration vector and
each {leff,k> vector and Tk is given by:
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In (13), we can see that for each mode, the
acceleration is projected on corresponding {leff,k>.
This projected acceleration (acc) excites the mass-
spring-dashpot system that gives a force
Tk(ω ).meff,k.acc (the response of a 1-dof system in the
{leff,k> direction.
The acceleration can also be projected along the
eigenmodes of {MB}. Along each of these direction,
a mass, whose value is the corresponding eigenvalue,
is accelerated and also transmit a force to the base.
The sum of all these forces is the resulting reaction
force.
An identical computation can show that the
displacement of the structure.
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Once again, equation (15) shows that the
acceleration is projected along {leff,k> and the
displacement of the mass defines now the coefficient
to apply to the effective modes.

5.2 Force imposed  on internal dof
If we apply forces on the internal dof, we can extract
the junction reaction from (8).
(16) 
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So to obtain the solution, we can again separate in
forces (<φeff,k][F0>) applied at each mass. The
reaction force is applied along {leff,k>. The sum of all
forces is the reaction at the junction dof.
The displacement are expressed by (17).
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As in the previous case, the displacement of the
masses is the coefficient to apply to the effective
modes.
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6 Physical meaning

6.1 Effective modes
The kth effective mode is associated to a specific
direction defined by {Lk> in the rigid modes space of
the structure. The effective mode [φeff,k> is the
resulting deformation, multiplied by a factor ω k²,
when a uniform unitary acceleration is imposed
along direction {Lk> at the junction dof.
If we compute the deformation energy in this case
we have:
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6.2 Effective masses
The effective mass meff,k of mode k is the fraction of
the total static mass that can be attributed to this
mode (static inertia for rotation modes). As shown
by (18), this also represents the energy absorbed by
this mode multiplied by 2.ω k² when nominally
excited by a static unitary acceleration at the junction
nodes. The meff,k units are in any case kg.m².

6.3 Effective participation factors
The {Leff,k> vectors define a set of directions in the
rigid mode space (in general a 6-dimension space).
Each effective mode can be represented by a mass-
spring-dashpot system oriented along {leff,k> in the
rigid modes space. The mass value is meff,k, the
spring constant is keff,k and the damping coefficient is
unchanged. The elastic behaviour of the structure can
be represented in the rigid modes space by this set of
1-D mass-spring-dashpot systems (Fig 6.1).
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Figure 6-1: Representation of elastic modes in rigid
modes space (X, Y, θ z)

To obtain the mass associated to a direction, we can
project the effective mass along this vector. In our
case, it is simply the {Lk> components (Li along
rigid mode direction i). To obtain the mass
associated with a given direction i, when the system
is excited along any direction j, we come back to the
effective mass matrix definition: the component

({Lk>1/meff,k<Lk})i,j is the mass along rigid mode
direction i when the junction dof j is excited.

6.4 {MB} matrix, junction mass
The {MB} matrix represents the masses (kg.m²)
attributed to the junction nodes. This matrix is null in
continuous system. In equation (13), {MB} can be
expanded in its eigenvalues and eigenmodes. So, we
can represent it in the rigid mode space by masses
defined by the eigenvalues of the matrix and
positioned along the eigenvectors of the matrix.
These masses are connected to the centre of the
frame by rigid wires.

6.5 Overall structure representation
The complete structure can be represented in the
rigid modes space by all mass-spring-dashpot
systems and {MB} masses.

6.6 Guyan matrix
The Guyan matrix is the sum of all effective mass
matrices and the {MB} matrix. It can also be
represented by m masses, equal to the eigenvalues of
the matrix and positioned along the eigenvectors of
the matrix.
It can be easily demonstrated that the trace of Guyan
matrix is equal to the sum of the effective masses
and the trace of the MB matrix.
(19) { } { }0MtrMBtrm

k
k,eff =+∑

In our rigid modes space, it means that the sum of all
masses (effective and {MB} masses) is equal to the
sum of {M0} masses.

6.7 Junction dof acceleration
An acceleration of the junction dof {a0> can also be
represented in this space by a vector. As shown by
(13), this acceleration will excite each keff spring
system and each {MB} mass by means of its
projection along {leff,k> and eigenvectors of {MB}.
The resulting force given by all these 1-D systems is
equivalent in direction (in the rigid modes space) and
in intensity to the real reaction force in the junction
dof {q0> of the structure.
Equation (15) shows that the relative displacement of
each mass (with respect to the origin of the axes) is
the coefficient to apply to the modes to define the
deformation of the structure (note that no
displacement is possible along {MB} eigenvectors).
Moreover the displacement of the masses is
equivalent to the displacements of the centres of
gravity associated to the effective modes.

6.8 Internal dof force
A force applied to the internal dof's will be
represented in the effective modes base [φeff,k». In the
set of 1-D spring systems, each mass will be
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submitted in its own direction by a force <φeff,k][F0>.
The resulting force (or torque) of all those effective
masses corresponds in the rigid modes space to the
real force in the structure junction dof's. The
displacement is once again the coefficient to apply to
each effective mode [φeff,k>.

7 Stresses computation [4]

We define ‡σ (t)> as a vector of selected linear
combination of the stress tensor components
calculated or interpolated at any point of the
structure. The size of this vector is arbitrary (N≠ n).
The equation

(20) ‡σ (t)> = ‡S| |q(t)>
simply states that this linear combination of the
stress tensor elements is a linear relation of
displacements in the approximation of the linear
finite element model, assuming small deformations.
‡S| is a Nx(m + n) matrix. Using equation (7), we
can write

(21) ‡σ>= ‡S] [φ»«diag(… ω ²Hk/kk… )»«L} {q0>
                 + ‡S] [φ»«diag(… Hk/kk… )»«φ] [F0>
The first term is the dynamic stresses produced by
the junction movement {q0> and the second term
represents the dynamic stresses resulting from the
internal forces [F0>.
Similarly to the effective elastic modes, we define
the effective modal stresses with:

(22) ‡σ eff,k> = ‡σ e,k> 

k
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By this way, the stresses in the structure can be
obtained by equation (15) where a0 is the
acceleration and again the displacement of the 1-D
effective masses are the coefficients to apply to the
effective modal stresses.

8 Conclusion
We propose a general representation of a structure by
a set of 1-D mass-spring-dashpot systems in the
space of rigid modes.
The effective masses distribution can easily
characterise the relative contribution of the modes
when the structure is excited along a direction with a
given frequency.
For example this representation can be useful to
evaluate the structure response to vibration tests
where rigid bases are commonly used.

9 Appendix

9.1 Generalised Dirac notation
Structural analyses lead to use non square matrices
of various sizes: m x n, (m + n) x n, ... In order to
clearly identify the matrix size, we will use an

extension of the Dirac notation. In this formalism,
the symbols (Table 9-1) are written before and after
the matrix name to identify the number of lines (left
symbol) and columns (right symbols). It means that
the matrix |A| is a (m+n)x(m+n) symmetric matrix,
[p> is a n components column vector, <q} is a m
components line vector, |B?  is a (m+n)x(m+n) non
symmetric matrix.

Left Right Size Left Right Size
| | m + n < > 1 (one)
[ ] n « » n (non symmetric)
{ } m ? ? m + n (non symm.)

‡ ‡ N (non symmetric)

Table 9-1: matrix symbols

When two matrices are associated, adjacent symbols
must be identical. The meaning of this association is
the product of the 2 matrices. When several matrices
are multiplied, the final result has the size
determined by the external symbols (for example <A|
|B} {C] [D> is the product of 4 matrices and the
result is a scalar).
The transposition operation consists in inverting the
symbols [A}T = {A]. When the matrix is composed
of sub-matrices, this operation is defined by
inverting all symbols and transposing the main
matrix.
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