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Computing the structural stresses induced during
vibration qualification tests in a space equipment is a
difficult task, as the finite element codes have to use
time-varying loads. Alternative methods are proposed
for the stress evaluation during vibration tests. Effective
modal parameters are used to identify 3 types of
stresses: hyperstatic stresses, dynamic stresses from
base acceleration and dynamic stresses resulting from
the application of forces on the internal dof. These
stresses can be simply evaluated by static and modal
analyses with FEM. Their combination and summation
with the proposed formulation yields the real structural
stresses produced during the vibration test. Effects of
truncature of the modal series are considered and
several methods are proposed to evaluate the different
types of structural stresses. These methods are tested
with the study of the optical system of the Optical
Monitoring Camera (OMC) of the INTEGRAL
spacecraft.
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The structural design of subsystems for space
instruments is based on specifications on the
environmental conditions that will be seen by the
equipment. The design is then verified by analyses and
qualification on structural models. Generally, the
mechanical environment is specified in terms of static
loads called design loads, and uniaxial vibrations
applied on the mounting interface through a rigid
fixture. The qualification test can then easily be
performed with a shaking machine whose interface
represents the rigid fixture. Sine and random tests are
often specified. For space equipments, the static load
specification generates generally lower stress levels than
the ones produced with the dynamic environment. In
some frequency ranges, or in flexible structures, the
stresses in the vibration tests can exceed the static
stresses. Therefore, the dynamic stresses can become
the driving parameter in the design phase. It means that
the vibration loads become the dimensioning loads for
the equipment. For this reason, we emphasize the need
to evaluate efficiently the dynamic stresses resulting
from vibration tests.
This driven-base dynamic environment allows the
decoupling of junction degrees of freedom (dof) from

the other structural dof. Using a dedicated formulation
(ref [1]), one can derive the effective parameters of the
dynamic model. These parameters play a significant role
in the system response. A very first approach using the
effective masses of a dynamic system is the well-known
concept of dynamic mass. It can be used (ref [2] and
[4]) to derive a first evaluation of an equivalent dynamic
force on the interface dof. This approach is also very
useful for the dimensioning of the fixtures at the base
junction.
To evaluate formally the dynamic stresses, the concept
of effective parameters will be used to derive the stress
equation. With this formulation, 3 types of stresses will
be well identified. They all can be computed with
standard FE softwares, with a simple static analysis and
a single modal analysis. After performing these
preliminary analyses, our original formulation of the
stress equation can be used to any type of uniaxial
driven-base vibration environment. The junction dof can
be submitted to sine acceleration, shock acceleration as
well as random excitation defined by a PSD.
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Structural analyses lead to use non square matrices of
various sizes: m x n, (m + n) x n, ... In order to clearly
identify the matrix size, we will use an extension of the
Dirac notation. In this formalism, the symbols (table
2.1) are written before and after the matrix name to
identify the number of lines (left symbol) and columns
(right symbols).

Left Right Size Left Right Size
| | m + n < > 1 (one)
[ ] n « » n (non symmetric)

{ } m m + n (non symm.)

‡ ‡ N (non symmetric)

Table 2.1: matrix symbols

It means that the matrix |A| is a (m+n)x(m+n) symmetric
matrix, [p> is a n components column vector, <q} is a m
components line vector, |B is a (m+n)x(m+n) non
symmetric matrix.
When two matrices are associated, adjacent symbols
must be identical. The meaning of this association is the
product of the 2 matrices. When several matrices are
multiplied, the final result has the size determined by



the external symbols (for example <A| |B} {C] [D> is
the product of 4 matrices and the result is a scalar).
The transposition operation consists in inverting the
symbols [A}T = {A]. When the matrix is composed of
sub-matrices, this operation is defined by inverting all
symbols and transposing the main matrix.

[ ]
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[ ]
] }D{B{
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=

Using this notation, the dynamic equilibrium equation
of the dof of a given structure can be written as

|M| | q&& > + |C| | q& > + |K| |q> = |F> (2.1)

with |q> the displacements, |M|, |C|, and |K| respectively
the associated mass, damping and stiffness matrices.
Let [q> be the n internal dof, {q> the m junction dof
(m = 6 for an isostatic mount, m = 1 when using a
shaker with a rigid interface). The equation can then be
written:
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����� 5LJLG�PRGHV�
The rigid mode matrix is defined to be the result of the
equation |K| |φ} = |F’}. In the solution we impose a
unitary displacement of each junction dof, one by one
without applying any force on the internal dof. By this

way we obtain a solution of the type  |φ} =


φ

}I{

}[  with

{I} = {diag (...1…)}.
If, as in our application, the support is infinitely rigid or
isostatic, the force will be null (|F} = |0}) and the rigid
modes (m = 6) will be defined as [φ} = - [K] -1[K} if
[K] -1 exists. In this case, we can also observe than {K}-
{K][K] -1[K} is null.

����� (ODVWLF�PRGHV
The elastic modes |φ» (» because non-symmetrical)
corresponding to the structure clamped at the junction

dof can be written as  |φ» = »
»0{

»[φ . The matrix [φ» is

square but non symmetric and is composed of the n
eigenvectors of the [M], [K] system and defined by

[ [–diag(ωk²)][M] + [K] ] [ φ»= 0 k = 1,2,…n

By this way each column of [φ», i.e. [φk>, diagonalizes
simultaneously [M] and [K] :

kk = <φk] [K] [ φk> are the modal stiffness and
mk = <φk] [M] [ φk> are the modal masses.

The eigenvectors are defined with a free normalization,
therefore the modal parameters have no physical
meaning. Nevertheless, their ratio, equal to ωk²

represents the pulsation of the eigenmode (2π fk where
fk is the frequency of mode k).
All theses modes (rigid and elastic) will be grouped in
the (m + n)x(m + n) non symmetric matrix  |φ  which
constitutes a complete basis on which the solution of the
dynamic equation can be developed.

����� &RPSXWDWLRQ�RI�PLVFHOODQHRXV�PDWULFHV
 Using these definitions, we can compute the following
expressions:

{ φ | K | φ } = {K} – {K] [K] -1[K}      if   [K] -1     exists
{ φ | M | φ } = {K][K] -1[M][K] -1[K} – {M][K] -1[K} –
                        {K][K]-1[M}+{M}    if   [K] - 1 exists
                    =  {M0}

This matrix {M0} represents the masses and inertia of
the structure and is generally named Guyan mass
matrix.

« φ | K | φ » = « diag(… kk …) »
« φ | M | φ » = « diag( … mk … ) »
{ φ | M | φ » ≡ {L» = {M][ φ» + {φ][M][ φ»
« φ | M | φ } ≡ «L} = «φ][M} + « φ][M][ φ}

These two last matrices are the coupling matrices
between junction modes and eigenmodes (also called
participation factors).

{ φ | K | φ » = { 0 »
« φ | K | φ } = « 0 }

����� 9DULDEOH�WUDQVIRUPDWLRQ�
For further analysis, we will develop the solution on the
rigid/elastic modes basis:

|q(t)>  =  |φ τ(t) >  =  |φ}{ τ(t)> + |φ» «τ(t)>  (3.1)

Resulting from this, {q(t)> = {τ(t)>, the displacement at
the junction. The internal displacements are defined by
[q(t)> :

[q(t)> = [φ} {q(t)> + [ φ»«τ(t)>  (3.2)

The equilibrium equation can be rewritten

|M| |φ τ(t)>’’ + |K| |φ τ(t)> = |F(t)>  (3.3)

Pre-multiplying this equation by |φ T = φ|, we obtain

φ|M|φ τ(t)>’’ + φ|K|φ τ(t)> = φ | F(t) > (3.4)

Where the unknowns are  «τ(t)> and {F(t)>. The new
matrices become:

φ | M | φ  = 





}M{»L{

}L«»...)m(...diag«

0

k  

φ | K | φ  = 





φφ }K{»0{

}0«...)»k(...diag« k

And in the case of a rigid/isostatic mounting, we
showed earlier that {φ|K|φ} = {0}.



����� 'DPSLQJ
The damping of the structure is a quite difficult
parameter to evaluate. It will not be discussed here and
we will only use the assumption of small diagonal
structural damping, meaning that we can introduce the
matrix φ|C|φ �� that multiplies the velocities in the
equilibrium equation, with the following definition:

φ | C | φ = 





}0{»0{

}0«...)»c(...diag« k

Where ck = 2 εk mk ωk , εk being the damping factor of
the mode k.

����� 5HVXOWV�FRPSXWDWLRQ
Let’s the excitation be described by [F(t)> = [F0> eiωt

and {q(t)> = {q0> eiωt. In this case the answer has the
same layout «τ(t)> = «τ0> eiωt and {F(t)> = {r(t)> =
{R0> eiωt.
The solution becomes

«diag( -mkω² + iω 2εkωkmk + kk)» «τ0> =
 «φ][F0> + ω² «L}{q 0>

so that

«τ0> = «diag(…Hk(ω)/kk…)»  «φ][F0> + ω² «L}{q 0>
 (3.5)

with the dynamic amplification factor , also written Hk,

k
k2

k

2k
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The [q0> and {R0> definitions are thus

[q0> = [ [φ} + [φ»«diag(…ω²Hk/kk…)»«L}  }{q 0>
                + [φ»«diag(…Hk/kk…)»«φ] [F0> (3.6)

and

{R0> = -ω² {L»«τ0> -ω²{φMφ}{q 0>+{φKφ}-{ φ][F0>
  ={-{L»«diag(…ω²Hk/kk…)»«φ] – {φ]][F0>

+ { -ω²{L»«diag(…ω²Hk/kk…)»«L}
                 - ω²{φMφ} + { φKφ}  } {q 0>  (3.7)

����� ,QWURGXFWLRQ�RI�WKH�G\QDPLF�PDWULFHV�
We introduce the following dynamic matrices:
the dynamic flexibility matrix:

[G(ω)] = [φ»«diag(…Hk/kk…)»«φ]

the dynamic mass matrix:

{M( ω)} = {L»«diag(…Tk/mk…)»«L}

the dynamic transmissibility matrix:

[T(ω)} = [φ»«diag(…Tk/mk…)»«L}

with

)(H1)(T k

2

k
k ω





ω
ω+=ω

Using these new matrices, the answer can be written as :
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These matrices can be deduced from simple modal
parameters that are often really useful.

[G(ω)] = Σk Hk(ω) [Gk]
{M( ω)} = {MB} + Σk Tk(ω) {M k}
[T(ω)} = Σk Tk(ω) [Tk}

where
{MB} = {M} – {M][M] -1[M} is the mass affected to the
junction (often small, null in continuous system),
[Gk] = [φk> 1/kk <φk] is the effective flexibility matrix of
mode k,
{M k} = {L k> 1/mk <Lk} is the effective mass matrix of
mode k, and
[Tk} = [φk> 1/mk <Lk} is the effective transmissibility
matrix of mode k.
Note that these expressions have a physical meaning
and represent for each dof the part of the total
mass/rigidity/transmissibility affected to the mode. It
can be verified that

Σk [Gk] = [G] = [K] -1

Σk {M k} = {M 0} – {MB}
Σk [Tk} = [φ} + [M] -1[M}

��� ())(&7,9(�(/$67,&�02'(6

First of all, we will assume that the movement only
occurs along a single direction. It means that the {q0>
vector has only one non-null component. In this case

«L}{ ω²q0> = «1k kk,eff mm >ω²q0 (4.1)

where the scalar q0 defines the amplitude of the shaker
movement and 1k is ±1 depending on the mode, then

 «diag(…Hk/kk…)»«1k kk,eff mm >ω²q0=

«
2
k

kH

ω
 1k 

k

k,eff

m

m > ω² q0 = « (Tk-1) . 1k

k

k,eff

m

m > q0   (4.2)

The factor 1k
k

k,eff

m

m  is non-dimensional factor that can

be inserted in the eigenmodes matrix. The sign (1k) of
this parameter must be defined in order that the center
of gravity of each mode or the reaction implied by each
mode on the support has the same sign.  So we define

the new vectors [φeff,k> = [φe,k> . 1k

N

NHII

P

P ,  that will be

called HIIHFWLYH� HODVWLF�PRGHV� for the specific direction
of excitation. It can be verified that the modal masses
and the participation factors in this new basis are equal
to the effective mass. The displacement can be written

[q0> = [ [φ}{ ω²q> + [φeff»«Hk/ωk²> ω²q0 > (4.3)
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We define ‡σ(t)> as a vector of selected linear
combination of the stress tensor components calculated
or interpolated at any point of the structure. The size of
this vector is arbitrary (N≠n). The equation

‡σ(t)> = ‡S| |q(t)> (5.1)

simply states that this linear combination of the stress
tensor elements is a linear relation of displacements in
the approximation of the linear finite element model,
assuming small deformations.
‡S| is a Nx(m + n) matrix. Using equation (3.1), we can
write

‡σ(t)> = ‡S| |φ τ(t)>

           ‡σ> =  ‡S| |φ}{q 0>
                     + ‡S] [φ»«diag(…ω²Hk/kk…)»«L} {q 0>
                 + ‡S] [φ»«diag(…Hk/kk…)»«φ][F0> (5.2)

The first term ‡S| |φ}{q 0> represents the hyperstatic
stress, which is null in our application due to the
isostatic/rigid mount. The second term is the dynamic
stresses produced by the junction movement {q0> and
the third term represents the dynamic stresses resulting
from the internal forces [F0>.
In the frame of driven-base environments, we only
impose a junction displacement. The stresses can then
be simply expressed as

‡σ> = ‡σe»«diag(…Hk/kk…)»«L} { ω²q0> (5.3)

The ‡σe,k> vectors will be called stress modes. As the
eigenmodes, the stress modes are defined with a free
normalization.
Similarly to the effective elastic modes, we define the
HIIHFWLYH�PRGDO�VWUHVVHV with:

‡σeff,k> = ‡σe,k> .1k

k

k,eff

m

m (5.4)

By this way, the stresses in the structure for a base-
driven excitation in the x-direction can be obtained by
equation (5.5) where a0 is the shaker acceleration.

‡σ> = Σk ‡σeff,k> 
2
k

kH

ω
ω² q0  = Σk ‡σeff,k> 

2
k

kH

ω
 a0 (5.5)

In the case of static loading (ω = 0), the stresses in the
structure when applying a volumic acceleration a0 are
equal to

‡σstatic> = Σk ‡σeff,k> a0/ωk² (5.6)
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����� /LPLWDWLRQ�WR�WKH�XVHIXO�PRGHV
The equation (5.5) is exact if we use all the modes to
evaluate the stresses. In practical applications, only the
first modes are correctly known after a finite element
model analysis. We have to deal with a finite set of
modes.
A first approach is to use only the first modes and to
neglect the effect of the high frequency modes. If the

stress is evaluated at eigenfrequencies far lower than
ωK, we can approximate the Hk>K by 1. It means that the
σresidual is equal to the static contribution of the high
frequency modes.
To improve the result, we propose to extract the static
contribution from each term of the sum (5.5). This
solution is formally exact and is best suited for
truncature with small values of ω (ω<ωK’ ) . Therefore, if
we want to limit the number of modes involved in the
development, we must use the next equation resulting
from the "VXPPDWLRQ�UXOHV�RI�WKH�VWUHVVHV":

‡σ> = ‡σstatic (volumic acceleration = ω² q0) >

                           + Σk≤K’  [σeff,k> 
2
k

k 1H

ω
−  ω² q0 (6.1)

where K’≤ K. In this case, limω→∞ (Hk(ω)-1) = 0 for
large k, this minimizes the truncature error. The static
stresses can then be computed by a simple static FEM
analysis or by formula’s table (i.e. ref [3]).

����� 3UDFWLFDO�XVH
The expression (6.1) must be compared with the
following approximation, often made in a preliminary
stage of the study. The approximation method, which is
faster to apply, is very useful at a preliminary stage of
the study with a rough model of the structure:
- to verify the integrity of the primary structure;
- to evaluate roughly the acceleration at the center of

gravity corresponding to qualification tests, which
should be compared to the flight;

- to identify which qualification test is the most
stringent and on which the design should be
optimized.

In a preliminary stage, we proceed with the computation
of the acceleration at the instantaneous center of gravity
provided with the help of the dynamic mass (ref [1], [2],
[4]). This acceleration at the center of gravity is used as
a general acceleration statically applied to the whole
structure. The stresses obtained under these assumptions
are given by

‡σapproximated(ω)> = ‡σstatic;ω²q=I> q0(ω) ω² Mdyn(ω)

  =‡σstatic;ω²q=I> q0(ω) ω² (1 + Σk meff,k,x/Mstat Hk ω²/ωk² )
(6.2)

Expression (6.2) is to be compared with (6.1). As it can
readily be seen, theses two formulations are equivalent
for low values of ω but they are quite different at the
first resonances of the structure.

����� $SSUR[LPDWLRQ�E\�WKH�GHIRUPDWLRQ�HQHUJ\
We propose here a simple way to make a preliminary
evaluation of the mean stress in a vibrating structure.
During vibrations, there is an exchange between
deformation energy and kinetic energy. When the
structure reaches a non-deformed state, the velocities
are the highest and when the structure stops its
movement (the center of gravity speed (vcog) is null), the
deformations are the highest. The kinetic energy can be



written with (6.3) where Mstat is the static mass of the
equipment,

K(ω) = ½ Mstat . vcog(ω)²  = ½ Mstat . acog(ω)²/ω² (6.3)

acog, the acceleration at the center of gravity, is given by

base
stat

cog a
M

)(M
a

ω= (6.4)

The deformation energy can be written

V
E

)(

2

1
dV

E2

1
dV

2

1
)(D

aver

2
volumeonaverage

V aver

2

V

ωσ
=σ=σε=ω ∫∫ (6.5)

We can write that the maximum deformation energy is
equal to the maximum kinetic energy.

        K(ω) = D(ω)

        Mstat . acog²/ω²  = σaver² .V/E (6.6)

and,

σaver(ω)² = ρaver E acog² /ω² (6.7)

This average value on the volume can be used as a
rough estimate of the maximum stress. For example in a
cantilever beam, σmax = 6 σaver .
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����� (IIHFWLYH� PRGHV� FRPELQDWLRQ� LQ� UDQGRP
YLEUDWLRQ�

We have seen (eq 5.5) that stresses can be expressed as

‡σ> = Σk ‡σeff,k> a0 Hk/ωk² (7.1)

It can also be written ‡σ> = ‡σ(ω)> a0 where ‡σ(ω)> is
a transfer function.
The random vibrations tests are defined by they power
spectral density (PSD). It is well known that in a linear
system the PSD of the response is linked to the
excitation PSD by the product of the conjugate of the
transfer function with the transfer function itself. So

‡PSDσ‡= ‡σ(ω)*>PSDa0 <σ(ω)‡ (7.2)
PSDσi = ||σ(ω)i||² PSDa0 (7.3)

where ||σ(ω)i || is the modulus of the ith component of the
vector.
Probability analyses allow us to derive the RMS value
from the frequency integral of the PSD, so,

 .dPSD)( 0a

2

i
2

RMS,i ∫
+∞

∞−

ωωσ=σ (7.4)

The evaluation of this expression leads to equation (7.5)
when eigenfrequencies are in the frequency range of the
PSD.

 σi,RMS² ≈ Σk |σeff,k,i|²/ωk
4 

2

π .
k2

1

ε
.fk.PSD a0 (fk)  (7.5)

When there are no eigenfrequencies in the range, the
solution of (7.4) is defined by equation (7.6)

σi,RMS² ≈  σstat,i² abase,RMS² (7.6)

����� 'HIRUPDWLRQ� HQHUJ\� IRUPXOD� LQ� UDQGRP
YLEUDWLRQ�

The same operation can be performed on the
deformation energy formula. The transfer function from
a0 to σaver can be derived from (6.7):

 ∑ ω
ωρ

k stat

k,eff
aver

)(T

M

m
E (7.7)

 so

PSDσaver = 
2

k stat

k,eff
aver

)(T

M

m
E ∑ ω

ωρ PSDa0 (7.8)

And the integration on all frequencies gives

σRMS,moy² = ρaver.E.Σk (meff,k/Mstat)².
kkf16

1

πε
 PSDa0(fk)

(7.9)
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The different approximations proposed to evaluate the
stresses are tested here on a simple system. This system
consists in a cantilever beam, 150 mm long, 5 mm thick
and 10 mm large. This beam is made of Aluminium
with a volumic mass of 2700 kg/m³ and a Young
modulus of 72500 MPa.  The modal analysis with FEM
code gave the results of table 8.1.

Frequency Effective mass along x Modal mass
187 Hz 1.238 10-2 (61.1 %) 5.054 10-3

1165 Hz 3.817 10-3 (18.8 %) 5.085 10-3

3241 Hz 1.321 10-3 (6.5 %) 5.120 10-3

6304 Hz 6.845 10-4 (3.4 %) 5.149 10-3

Table 8.1: Beam analysis result

Assuming a damping factor of 2% on each elastic mode
and an acceleration at the clamping junction of 119
m/s², we perform different computations that we detail
hereafter.

����� �6LQXVRLGDO�H[FLWDWLRQ

������� 5HIHUHQFH�FRPSXWDWLRQ
The reference computation for the sinus loading will be
performed with a dynamic analysis FEM software
(6$0&()) using time varying loads. The stress vector
includes the maximum value located at the clamping
area, i.e. 105.1 MPa.

������� (ODVWLF�HQHUJ\
Using the formula (6.13), the mean σ is 21.8 MPa, to
obtain the maximum stress, we can multiply this value
by 6 and we obtain 130.8 MPa.

������� &RPSDULVRQ� EHWZHHQ� VWDWLF� VWUHVV� DQG� PRGDO
VXP�RI�VWUHVV

It was demonstrated earlier that the static stress for a
unitary volumic acceleration must be identical to the
sum of the effective stress modes divided by the square
of their pulsation. This was verified on the test case and
the result is shown on figure 8.1.
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Figure 8.1: Comparison of effective stress modes with
static stresses

������� 6WUHVVHV�PRGHV�FRPELQDWLRQ
Using the modal stress vectors given by FE modal
analysis, we can derive the effective stress vectors. The
addition of all vectors with their adequate multiplicative
coefficient would lead to the exact solution if the modes
were correctly estimated (which is not the case in FEM).
It was seen that, at the first eigenfrequency, the first
mode represents almost all the total maximum stress.
At the second frequency, the second mode is dominant
and at low frequency, several modes are needed to reach
the correct value.

Frequency Exact
solution

Mode
1

Mode1+
Mode2

M1+M2+
Mode3

20 Hz 4.766 4.251 4.627 4.707
187 Hz 105.1 105.1 105.1 105.1

1165 Hz 9.409 0.103 9.406 9.409
Table 8.2: Maximum stresses (MPa) in the beam.

������� 6WDWLF�FRQVWUDLQW�DQG�DGGLWLRQ�RI�VWUHVV�PRGHV�
It was shown in paragraph 6.1 that computing the static
stress with a unitary volumic acceleration could
improve the results of the computation. This was
applied to our test model. On this simple model, the
difference is not obvious but it was observed that the
errors made on higher modes are suppressed.

Frequency Exact
solution

Static
stress

St+ M1 St+M1
+M2

20 Hz 4.766 4.717 4.766 4.766
187 Hz 105.1 4.717 105.1 105.1
1165 Hz 9.409 4.717 0.404 9.409

Table 8.3: Maximum stress (MPa) in the beam.

����� 5DQGRP�H[FLWDWLRQ

������� (ODVWLF�HQHUJ\
The use of the simple elastic energy formula leads to a
RMS maximum stress of 23.5 MPa for the lateral
direction.

������� 6WUHVV�PRGHV�FRPELQDWLRQ
Formula (7.5) and (7.6) were used to evaluate the RMS
stresses in the beam. The following values were
observed for lateral and for axial excitation.

Equation (7.5) Equation (7.6)
Lateral 19.23 MPa N.A.
Axial N.A. 0.118 MPa
Table 8.4: Results for random excitation.
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The Optical Monitoring Camera (OMC) is an
instrument that will be mounted on the INTEGRAL
spacecraft. The optical subsystem of the camera, which
consists in a 6-lens system, is to be designed according
the base-driven vibration specification. The lenses are
mounted in a titanium lens barrel. The goal of the study
is to verify that the maximum stress is lower than the
elastic limit of titanium during qualification vibration
test.
The simple deformation energy formula gives a mean
value of 0.99 MPa for sinus vibration (100 Hz) and
2.41 MPa RMS for random vibration. Using the other
methods developed in this article, the maximum
estimated stress is 6.198 MPa for sine test and 27.7 MPa
RMS for random vibration what is lower than the elastic
limit.

���� &21&/86,216

This paper presents a new efficient way to evaluate the
effects of mechanical tests on equipments mounted on
vibration machines in both sine and random tests. It
only requires a standard modal FE analysis and a single
static FE analysis. The conditions required to truncate
the modal series are discussed and an appropriate
formulation is proposed to reduce the number of modes
to include in the analysis.  This was tested on a simple
model (cantilever beam) and than applied on the OMC
optical subsystem.

���� $.12:/('*0(176

The structural design of the OMC Optical System was
performed by DSS/OIP (B). FE analyses were
conducted by Janssen Engineering SA. All the activities
on the OMC Optical Subsystem are funded by the
Belgian OSTC and managed by Centre Spatial de Liège.
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