EFFECTIVE MODAL PARAMETERS TO EVALUATE STRUCTURAL STRESSES Rochus P.¹, Defise JM.¹, Plesseria JY.¹*, Hault F.², Janssen G.³ Centre Spatial de Liège, Av. Du Pré Aily, B-4031Angleur (Liège), Belgium http://www.ulg.ac.be/cslulg E-mail: jyplesseria@ulg.ac.be University of Liège, Belgium Janssen Engineering S.A., Rue Haustrée, 11, B-4608 Warsage, Belgium #### **ABSTRACT** Computing the structural stresses induced during vibration qualification tests in a space equipment is a difficult task, as the finite element codes have to use time-varying loads. Alternative methods are proposed for the stress evaluation during vibration tests. Effective modal parameters are used to identify 3 types of stresses: hyperstatic stresses, dynamic stresses from base acceleration and dynamic stresses resulting from the application of forces on the internal dof. These stresses can be simply evaluated by static and modal analyses with FEM. Their combination and summation with the proposed formulation yields the real structural stresses produced during the vibration test. Effects of truncature of the modal series are considered and several methods are proposed to evaluate the different types of structural stresses. These methods are tested with the study of the optical system of the Optical Monitoring Camera (OMC) of the INTEGRAL spacecraft. # 1. INTRODUCTION The structural design of subsystems for space instruments is based on specifications on the environmental conditions that will be seen by the equipment. The design is then verified by analyses and qualification on structural models. Generally, the mechanical environment is specified in terms of static loads called design loads, and uniaxial vibrations applied on the mounting interface through a rigid fixture. The qualification test can then easily be performed with a shaking machine whose interface represents the rigid fixture. Sine and random tests are often specified. For space equipments, the static load specification generates generally lower stress levels than the ones produced with the dynamic environment. In some frequency ranges, or in flexible structures, the stresses in the vibration tests can exceed the static stresses. Therefore, the dynamic stresses can become the driving parameter in the design phase. It means that the vibration loads become the dimensioning loads for the equipment. For this reason, we emphasize the need to evaluate efficiently the dynamic stresses resulting from vibration tests. This driven-base dynamic environment allows the decoupling of junction degrees of freedom (dof) from the other structural dof. Using a dedicated formulation (ref [1]), one can derive the effective parameters of the dynamic model. These parameters play a significant role in the system response. A very first approach using the effective masses of a dynamic system is the well-known concept of dynamic mass. It can be used (ref [2] and [4]) to derive a first evaluation of an equivalent dynamic force on the interface dof. This approach is also very useful for the dimensioning of the fixtures at the base junction. To evaluate formally the dynamic stresses, the concept of effective parameters will be used to derive the stress equation. With this formulation, 3 types of stresses will be well identified. They all can be computed with standard FE softwares, with a simple static analysis and a single modal analysis. After performing these preliminary analyses, our original formulation of the stress equation can be used to any type of uniaxial driven-base vibration environment. The junction dof can be submitted to sine acceleration, shock acceleration as well as random excitation defined by a PSD. # 2. THE GENERALIZED DIRAC NOTATION Structural analyses lead to use non square matrices of various sizes: $m \times n$, $(m + n) \times n$, ... In order to clearly identify the matrix size, we will use an extension of the Dirac notation. In this formalism, the symbols (table 2.1) are written before and after the matrix name to identify the number of lines (left symbol) and columns (right symbols). | Left | Right | Size | Left | Right | Size | |------|-------|-------|------|----------|-------------------| | | | m + n | < | > | 1 (one) | | [|] | n | « | » | n (non symmetric) | | { | } | m | • | • | m + n (non symm.) | | | | | ‡ | ‡ | N (non symmetric) | <u>Table 2.1</u>: matrix symbols It means that the matrix |A| is a (m+n)x(m+n) symmetric matrix, [p> is a n components column vector, $<q\}$ is a m components line vector, |B| is a (m+n)x(m+n) non symmetric matrix. When two matrices are associated, adjacent symbols must be identical. The meaning of this association is the product of the 2 matrices. When several matrices are multiplied, the final result has the size determined by the external symbols (for example <A|B $\}$ {C] [D> is the product of 4 matrices and the result is a scalar). The transposition operation consists in inverting the symbols $[A]^T = \{A\}$. When the matrix is composed of sub-matrices, this operation is defined by inverting all symbols and transposing the main matrix. $$\begin{bmatrix} A \\ C \end{bmatrix} \begin{bmatrix} B \end{bmatrix}^{T} = \begin{bmatrix} A \\ B \end{bmatrix} \begin{bmatrix} C \end{bmatrix}$$ Using this notation, the dynamic equilibrium equation of the dof of a given structure can be written as $$|M| |\ddot{q}\rangle + |C| |\dot{q}\rangle + |K| |q\rangle = |F\rangle$$ (2.1) with |q> the displacements, $|M|,\,|C|,$ and |K| respectively the associated mass, damping and stiffness matrices. Let [q> be the n internal dof, $\{q>$ the m junction dof (m=6) for an isostatic mount, m=1 when using a shaker with a rigid interface). The equation can then be written: $$\begin{vmatrix} [M] & [M] \\ [M] & [M] \end{vmatrix} \begin{vmatrix} [\ddot{q}] \\ [\ddot{q}] \end{vmatrix} + \begin{vmatrix} [C] & [C] \\ [\ddot{q}] \end{vmatrix} + \begin{vmatrix} [\ddot{q}] \\ [\ddot{q}] \end{vmatrix} + \begin{vmatrix} [K] & [K] \\ [K] & [K] \end{vmatrix} \begin{vmatrix} [q] \\ [q] \end{vmatrix} = \begin{vmatrix} [F] \\ [F] \end{vmatrix}$$ $$(2.2)$$ # 3. RESOLUTION OF THE EQUILIBRIUM EQUATION ## 3.1. Rigid modes. The rigid mode matrix is defined to be the result of the equation $|K| | \phi \} = |F' \}$. In the solution we impose a unitary displacement of each junction dof, one by one without applying any force on the internal dof. By this way we obtain a solution of the type $$|\phi\rangle = \begin{vmatrix} [\varphi] \\ \{I\} \end{vmatrix}$$ with $$\{I\} = \{diag(...1...)\}.$$ If, as in our application, the support is infinitely rigid or isostatic, the force will be null ($|F\} = |0\}$) and the rigid modes (m = 6) will be defined as $[\phi] = -[K]^{-1}[K]$ if $[K]^{-1}$ exists. In this case, we can also observe than $\{K\}$ - $\{K\}[K]^{-1}[K]$ is null. # 3.2. Elastic modes The elastic modes $|\phi\rangle$ (» because non-symmetrical) corresponding to the structure clamped at the junction dof can be written as $|\phi\rangle = \left| \begin{matrix} [\phi\rangle\rangle \\ \rangle \end{matrix} \right|$. The matrix $[\phi\rangle$ is $[\phi\rangle\rangle$ square but non symmetric and is composed of the n eigenvectors of the [M], [K] system and defined by $$[-diag(\omega_k^2)][M] + [K]][\phi = 0 \quad k = 1,2,...n$$ By this way each column of $[\phi]$, i.e. $[\phi_k]$, diagonalizes simultaneously [M] and [K]: $$k_k = \langle \phi_k \rangle$$ [K] [$\phi_k \rangle$ are the modal stiffness and $m_k = \langle \phi_k \rangle$ [M] [$\phi_k \rangle$ are the modal masses. The eigenvectors are defined with a free normalization, therefore the modal parameters have no physical meaning. Nevertheless, their ratio, equal to ω_k^2 represents the pulsation of the eigenmode $(2\pi f_k)$ where f_k is the frequency of mode k). All theses modes (rigid and elastic) will be grouped in the (m + n)x(m + n) non symmetric matrix $|\phi|$ which constitutes a complete basis on which the solution of the dynamic equation can be developed. ## 3.3. Computation of miscellaneous matrices Using these definitions, we can compute the following expressions: This matrix $\{M_0\}$ represents the masses and inertia of the structure and is generally named Guyan mass matrix. These two last matrices are the coupling matrices between junction modes and eigenmodes (also called participation factors). $$\{ \phi \mid K \mid \phi \gg = \{ 0 \gg \emptyset \mid K \mid \phi \} = \emptyset \mid \emptyset \}$$ ## 3.4. Variable transformation. For further analysis, we will develop the solution on the rigid/elastic modes basis: $$|q(t)\rangle = |\phi \blacktriangleright \blacktriangleleft \tau(t)\rangle = |\phi \} \{\tau(t)\rangle + |\phi \rangle \ll \tau(t)\rangle (3.1)$$ Resulting from this, $\{q(t) > = \{\tau(t) > \}$, the displacement at the junction. The internal displacements are defined by [q(t) >]: $$[q(t)> = [\phi] \{q(t)> + [\phi) \ll \tau(t)>$$ (3.2) The equilibrium equation can be rewritten $$|\mathbf{M}| |\phi \triangleright \blacktriangleleft \tau(t) > " + |\mathbf{K}| |\phi \triangleright \blacktriangleleft \tau(t) > = |\mathbf{F}(t) > (3.3)$$ Pre-multiplying this equation by $|\phi|^T = |\phi|$, we obtain $$\blacktriangleleft \phi |M| \phi \blacktriangleright \blacktriangleleft \tau(t) >$$ '' $+ \blacktriangleleft \phi |K| \phi \blacktriangleright \blacktriangleleft \tau(t) > = \blacktriangleleft \phi \mid F(t) > (3.4)$ Where the unknowns are $\ll \tau(t) >$ and $\{F(t) >$. The new matrices become: $$\blacktriangleleft \phi \mid M \mid \phi \blacktriangleright = \blacktriangleleft \begin{pmatrix} \text{«diag}(\dots m_k \dots) & \text{«L} \\ \{L & \{M_0\} \end{pmatrix} \blacktriangleright$$ $$\blacktriangleleft \phi \mid K \mid \phi \blacktriangleright = \blacktriangleleft \begin{pmatrix} \text{«diag(...k_k...)»} & \text{«0} \\ \text{{0»}} & \text{{ϕK$$$}$$$$$} \end{pmatrix} \blacktriangleright$$ And in the case of a rigid/isostatic mounting, we showed earlier that $\{\phi|K|\phi\} = \{0\}$. ## 3.5. Damping The damping of the structure is a quite difficult parameter to evaluate. It will not be discussed here and we will only use the assumption of small diagonal structural damping, meaning that we can introduce the matrix $\blacktriangleleft \phi |C| \phi \blacktriangleright$, that multiplies the velocities in the equilibrium equation, with the following definition: $$\blacktriangleleft \phi \mid C \mid \phi \blacktriangleright = \blacktriangleleft \begin{pmatrix} \text{«diag}(...c_k...)» & \text{«0} \\ \{0» & \{0\} \end{pmatrix} \blacktriangleright$$ Where $c_k=2~\epsilon_k~m_k~\omega_k$, ϵ_k being the damping factor of the mode k. ## 3.6. Results computation Let's the excitation be described by $[F(t)>=[F_0>e^{i\omega t}]$ and $\{q(t)>=\{q_0>e^{i\omega t}\}$. In this case the answer has the same layout $\ll \tau(t)>=\ll \tau_0>e^{i\omega t}$ and $\{F(t)>=\{r(t)>=\{R_0>e^{i\omega t}\}\}$. The solution becomes so that $$\label{eq:total_state} \begin{split} & \ll \tau_0 > = \ll diag(\ldots H_k(\omega)/k_k \ldots) \text{ \ast $ $ \ll 0 $ } \\ & (3.5) \end{split}$$ with the dynamic amplification factor, also written H_k, $$H_{k}(\omega) = \frac{1}{1 - \frac{\omega^{2}}{\omega_{k}^{2}} + 2i\varepsilon_{k} \frac{\omega}{\omega_{k}}}$$ The $[q_0>$ and $\{R_0>$ definitions are thus and $$\begin{split} \{R_0>&=-\omega^2 \; \{L> < \tau_0> -\omega^2 \{ \varphi M \varphi \} \{q_0> + \{ \varphi K \varphi \} - \{ \varphi \} [F_0> \\ &= \{ -\{L> < diag(...\omega^2 H_k/k_k...)> < \varphi \} - \{ \varphi \}] [F_0> \\ &+ \{ -\omega^2 \{L> < diag(...\omega^2 H_k/k_k...)> < L \} \\ &-\omega^2 \{ \varphi M \varphi \} + \{ \varphi K \varphi \} \; \} \; \{q_0> \end{split}$$ # 3.7. Introduction of the dynamic matrices. We introduce the following dynamic matrices: the dynamic flexibility matrix: $$[G(\omega)] = [\phi \sim \operatorname{diag}(...H_k/k_k...) \sim \phi]$$ the dynamic mass matrix: $$\{M(\omega)\} = \{L \sim (diag(...T_k/m_k...) \sim L\}$$ the dynamic transmissibility matrix: $$[T(\omega)] = [\phi \sim diag(...T_k/m_k...) \sim L]$$ with $$T_k(\omega) = 1 + \left(\frac{\omega}{\omega_k}\right)^2 H_k(\omega)$$ Using these new matrices, the answer can be written as: $$\begin{vmatrix} [q_0> \\ \{R_0> \end{pmatrix} = \begin{vmatrix} [G(\omega)] & [T(\omega)\} - [M]^{-1}[M] \\ -\{T(\omega)] + \{M][M]^{-1} & -\omega^2\{M(\omega)\} + \{\phi K \phi\} \end{vmatrix} \begin{vmatrix} [F_0> \\ \{q_0> \end{pmatrix}$$ #### 3.8. Effective modal parameters These matrices can be deduced from simple modal parameters that are often really useful. $$\begin{split} & [G(\omega)] = \Sigma_k \; H_k(\omega) \; [G_k] \\ & \{M(\omega)\} = \{MB\} + \Sigma_k \; T_k(\omega) \; \{M_k\} \\ & [T(\omega)\} = \Sigma_k \; T_k(\omega) \; [T_k] \end{split}$$ where $\{MB\} = \{M\} - \{M][M]^{-1}[M\}$ is the mass affected to the junction (often small, null in continuous system), $[G_k] = [\varphi_k \! > 1/k_k < \! \varphi_k]$ is the effective flexibility matrix of mode k $\{M_k\} = \{L_k > 1/m_k < L_k\}$ is the effective mass matrix of mode k, and $[T_k] = [\varphi_k \!\!> 1/m_k <\!\! L_k]$ is the effective transmissibility matrix of mode k. Note that these expressions have a physical meaning and represent for each dof the part of the total mass/rigidity/transmissibility affected to the mode. It can be verified that $$\begin{split} & \boldsymbol{\Sigma}_k \left[\boldsymbol{G}_k \right] = \left[\boldsymbol{G} \right] = \left[\boldsymbol{K} \right]^{-1} \\ & \boldsymbol{\Sigma}_k \left\{ \boldsymbol{M}_k \right\} = \left\{ \boldsymbol{M}_0 \right\} - \left\{ \boldsymbol{M} \boldsymbol{B} \right\} \\ & \boldsymbol{\Sigma}_k \left[\boldsymbol{T}_k \right\} = \left[\boldsymbol{\phi} \right\} + \left[\boldsymbol{M} \right]^{-1} \boldsymbol{M} \end{split}$$ ## 4. EFFECTIVE ELASTIC MODES First of all, we will assume that the movement only occurs along a single direction. It means that the $\{q_0>$ vector has only one non-null component. In this case $$\text{«L}$$ }{ $\omega^2 q_0 > = \text{«1}_k \sqrt{m_{\text{eff},k} m_k} > \omega^2 q_0$ (4.1) where the scalar q_0 defines the amplitude of the shaker movement and $\mathbf{1}_k$ is ± 1 depending on the mode, then The factor $1_k \sqrt{\frac{m_{\rm eff,k}}{m_k}}$ is non-dimensional factor that can be inserted in the eigenmodes matrix. The sign (1_k) of this parameter must be defined in order that the center of gravity of each mode or the reaction implied by each mode on the support has the same sign. So we define the new vectors $$[\phi_{\text{eff},k}\rangle = [\phi_{\text{e},k}\rangle \cdot 1_k \sqrt{\frac{m_{\text{eff},k}}{m_k}}$$ that will be called *effective elastic modes* for the specific direction of excitation. It can be verified that the modal masses and the participation factors in this new basis are equal to the effective mass. The displacement can be written $$[q_0> = [\phi]\{\omega^2q> + [\phi_{eff}> \ll H_k/\omega_k^2> \omega^2q_0> (4.3)$$ #### 5. EXACT STRESS COMPUTATION We define $\ddagger \sigma(t) >$ as a vector of selected linear combination of the stress tensor components calculated or interpolated at any point of the structure. The size of this vector is arbitrary $(N \ne n)$. The equation $$\ddagger \sigma(t) > = \ddagger S | |q(t) > \tag{5.1}$$ simply states that this linear combination of the stress tensor elements is a linear relation of displacements in the approximation of the linear finite element model, assuming small deformations. $\ddagger S|$ is a Nx(m + n) matrix. Using equation (3.1), we can write $$\begin{split} & \ddagger \sigma(t) > = \ddagger S | | \phi \blacktriangleright \blacktriangleleft \tau(t) > \\ & \ddagger \sigma > = \ddagger S | | \phi \} \{ q_0 > \\ & + \ddagger S] [\phi \text{""diag}(...\omega^2 H_k/k_k...) \text{""} \text{"} \text{"} \{ q_0 > \\ & + \ddagger S] [\phi \text{""diag}(...H_k/k_k...) \text{""} \text{"} \phi \text{"} [F_0 > (5.2)] \end{split}$$ The first term $\sharp S|\ |\phi\}\{q_0>$ represents the hyperstatic stress, which is null in our application due to the isostatic/rigid mount. The second term is the dynamic stresses produced by the junction movement $\{q_0>$ and the third term represents the dynamic stresses resulting from the internal forces $[F_0>$. In the frame of driven-base environments, we only impose a junction displacement. The stresses can then be simply expressed as $$\ddagger \sigma > = \ddagger \sigma_e \text{ "" diag}(\dots H_k/k_k\dots) \text{ "" diag}(\dots H_k/k_k\dots) \text{ "" diag}(\dots H_k/k_k\dots) \text{ "" diag}(\dots H_k/k_k\dots) \text{"" \text{$$ The $\ddagger \sigma_{e,k} >$ vectors will be called stress modes. As the eigenmodes, the stress modes are defined with a free normalization. Similarly to the effective elastic modes, we define the *effective modal stresses* with: $$\ddagger \sigma_{\text{eff},k} > = \ddagger \sigma_{\text{e},k} > .1_k \sqrt{\frac{m_{\text{eff},k}}{m_k}}$$ (5.4) By this way, the stresses in the structure for a base-driven excitation in the x-direction can be obtained by equation (5.5) where a_0 is the shaker acceleration. $$\ddagger \sigma > = \Sigma_k \ddagger \sigma_{eff,k} > \frac{H_k}{\omega_k^2} \omega^2 \ q_0 \ = \Sigma_k \ddagger \sigma_{eff,k} > \frac{H_k}{\omega_k^2} \ a_0 \ \ (5.5)$$ In the case of static loading ($\omega = 0$), the stresses in the structure when applying a volumic acceleration a_0 are equal to $$\ddagger \sigma_{\text{static}} > = \Sigma_k \ddagger \sigma_{\text{eff},k} > a_0 / \omega_k^2$$ (5.6) # 6. APPROXIMATIONS FOR STRESSES EVALUATION # 6.1. Limitation to the useful modes The equation (5.5) is exact if we use all the modes to evaluate the stresses. In practical applications, only the first modes are correctly known after a finite element model analysis. We have to deal with a finite set of modes. A first approach is to use only the first modes and to neglect the effect of the high frequency modes. If the stress is evaluated at eigenfrequencies far lower than ω_K , we can approximate the $H_{k>K}$ by 1. It means that the $\sigma_{residual}$ is equal to the static contribution of the high frequency modes. To improve the result, we propose to extract the static contribution from each term of the sum (5.5). This solution is formally exact and is best suited for truncature with small values of ω ($\omega < \omega_{K^{\cdot}}$). Therefore, if we want to limit the number of modes involved in the development, we must use the next equation resulting from the "summation rules of the stresses": $$\label{eq:sigma} \begin{split} \ddagger \sigma > & = \ddagger \sigma_{\text{static (volumic acceleration = ω^2 q0)}} > \\ & + \Sigma_{k \leq K'} \left[\sigma_{\text{eff,k}} > \frac{H_k - 1}{\omega_{\scriptscriptstyle k}^2} \; \omega^2 \; q_0 \right] \end{split} \tag{6.1}$$ where $K' \le K$. In this case, $\lim_{\omega \to \infty} (H_k(\omega)-1) = 0$ for large k, this minimizes the truncature error. The static stresses can then be computed by a simple static FEM analysis or by formula's table (i.e. ref [3]). ## 6.2. Practical use The expression (6.1) must be compared with the following approximation, often made in a preliminary stage of the study. The approximation method, which is faster to apply, is very useful at a preliminary stage of the study with a rough model of the structure: - to verify the integrity of the primary structure; - to evaluate roughly the acceleration at the center of gravity corresponding to qualification tests, which should be compared to the flight; - to identify which qualification test is the most stringent and on which the design should be optimized. In a preliminary stage, we proceed with the computation of the acceleration at the instantaneous center of gravity provided with the help of the dynamic mass (ref [1], [2], [4]). This acceleration at the center of gravity is used as a general acceleration statically applied to the whole structure. The stresses obtained under these assumptions are given by $$\begin{split} & \ddagger \sigma_{approximated}(\omega) > = \ddagger \sigma_{static;\omega^2q=I} > q_0(\omega) \ \omega^2 \ M_{dyn}(\omega) \\ & = \ddagger \sigma_{static;\omega^2q=I} > q_0(\omega) \ \omega^2 \ (1 + \Sigma_k \ m_{eff,k,x}/M_{stat} \ H_k \ \omega^2/\omega_k^2 \) \end{split}$$ Expression (6.2) is to be compared with (6.1). As it can readily be seen, theses two formulations are equivalent for low values of ω but they are quite different at the first resonances of the structure. ## 6.3. Approximation by the deformation energy We propose here a simple way to make a preliminary evaluation of the mean stress in a vibrating structure. During vibrations, there is an exchange between deformation energy and kinetic energy. When the structure reaches a non-deformed state, the velocities are the highest and when the structure stops its movement (the center of gravity speed (v_{cog}) is null), the deformations are the highest. The kinetic energy can be written with (6.3) where M_{stat} is the static mass of the equipment, $K(\omega) = \frac{1}{2} \ M_{stat} \ . \ v_{cog}(\omega)^2 = \frac{1}{2} \ M_{stat} \ . \ a_{cog}(\omega)^2/\omega^2 \ (6.3)$ a_{cog} , the acceleration at the center of gravity, is given by $$a_{cog} = \frac{M(\omega)}{M_{stat}} a_{base}$$ (6.4) The deformation energy can be written $$D(\omega) = \frac{1}{2} \int_{V} \varepsilon \sigma dV = \frac{1}{2} \int_{V} \frac{\sigma^{2}}{E_{aver}} dV = \frac{1}{2} \frac{\sigma_{average \text{ on volume}}^{2}(\omega)}{E_{aver}} V (6.5)$$ We can write that the maximum deformation energy is equal to the maximum kinetic energy. $$K(\omega) = D(\omega)$$ $$M_{stat} \cdot a_{cog}^2/\omega^2 = \sigma_{aver^2} \cdot V/E$$ (6.6) and, $$\sigma_{\text{aver}}(\omega)^2 = \rho_{\text{aver}} E a_{\text{cog}}^2 / \omega^2$$ (6.7) This average value on the volume can be used as a rough estimate of the maximum stress. For example in a cantilever beam, $\sigma_{max} = 6 \ \sigma_{aver}$. #### 7. EXTENSION TO RANDOM VIBRATIONS # 7.1. Effective modes combination in random vibration. We have seen (eq 5.5) that stresses can be expressed as $$\ddagger \sigma > = \sum_{k} \ddagger \sigma_{\text{eff,k}} > a_0 H_k / \omega_k^2$$ (7.1) It can also be written $\ddagger \sigma > = \ddagger \sigma(\omega) > a_0$ where $\ddagger \sigma(\omega) >$ is a transfer function. The random vibrations tests are defined by they power spectral density (PSD). It is well known that in a linear system the PSD of the response is linked to the excitation PSD by the product of the conjugate of the transfer function with the transfer function itself. So $$\ddagger PSD_{\sigma} \ddagger = \ddagger \sigma(\omega) *> PSD_{a0} < \sigma(\omega) \ddagger$$ (7.2) $$PSD_{\sigma i} = \|\sigma(\omega)_i\|^2 PSD_{a0}$$ (7.3) where $\|\sigma(\omega)_i\|$ is the modulus of the i^{th} component of the vector. Probability analyses allow us to derive the RMS value from the frequency integral of the PSD, so, $$\sigma_{i,RMS}^2 = \int_{-\infty}^{+\infty} \|\sigma(\omega)_i\|^2 PSD_{a0}d\omega.$$ (7.4) The evaluation of this expression leads to equation (7.5) when eigenfrequencies are in the frequency range of the PSD. $$\sigma_{i,RMS}^{2} \approx \Sigma_{k} |\sigma_{eff,k,i}|^{2} / \omega_{k}^{4} \frac{\pi}{2} \cdot \frac{1}{2\epsilon_{\nu}} \cdot f_{k}.PSD_{a0} (f_{k}) (7.5)$$ When there are no eigenfrequencies in the range, the solution of (7.4) is defined by equation (7.6) $$\sigma_{i,RMS}^2 \approx \sigma_{stat,i}^2 a_{base,RMS}^2$$ (7.6) # 7.2. Deformation energy formula in random vibration. The same operation can be performed on the deformation energy formula. The transfer function from a_0 to σ_{aver} can be derived from (6.7): $$\sqrt{\rho_{\text{aver}} E} \sum_{k} \frac{m_{\text{eff},k}}{M_{\text{otat}}} \frac{T(\omega)}{\omega}$$ (7.7) SO $$PSD_{\sigma aver} = \left\| \sqrt{\rho_{aver} E} \sum_{k} \frac{m_{eff,k}}{M_{etat}} \frac{T(\omega)}{\omega} \right\|^{2} PSD_{a0} \quad (7.8)$$ And the integration on all frequencies gives $$\sigma_{RMS,moy}^{2} = \rho_{aver}.E.\Sigma_{k} (m_{eff,k}/M_{stat})^{2}.\frac{1}{16\pi\epsilon_{k}f_{k}} PSD_{a0}(f_{k})$$ $$(7.9)$$ #### 8. TEST ON SIMPLE STRUCTURE The different approximations proposed to evaluate the stresses are tested here on a simple system. This system consists in a cantilever beam, 150 mm long, 5 mm thick and 10 mm large. This beam is made of Aluminium with a volumic mass of 2700 kg/m³ and a Young modulus of 72500 MPa. The modal analysis with FEM code gave the results of table 8.1. | Frequency | Effective mass along x | Modal mass | |-----------|---------------------------------|------------------------| | 187 Hz | 1.238 10 ⁻² (61.1 %) | 5.054 10 ⁻³ | | 1165 Hz | 3.817 10 ⁻³ (18.8 %) | 5.085 10 ⁻³ | | 3241 Hz | 1.321 10 ⁻³ (6.5 %) | 5.120 10 ⁻³ | | 6304 Hz | 6.845 10 ⁻⁴ (3.4 %) | 5.149 10 ⁻³ | Table 8.1: Beam analysis result Assuming a damping factor of 2% on each elastic mode and an acceleration at the clamping junction of 119 m/s², we perform different computations that we detail hereafter. ## 8.1. Sinusoidal excitation ## 8.1.1. Reference computation The reference computation for the sinus loading will be performed with a dynamic analysis FEM software (*SAMCEF*) using time varying loads. The stress vector includes the maximum value located at the clamping area, i.e. 105.1 MPa. ## 8.1.2. Elastic energy Using the formula (6.13), the mean σ is 21.8 MPa, to obtain the maximum stress, we can multiply this value by 6 and we obtain 130.8 MPa. # 8.1.3. Comparison between static stress and modal sum of stress It was demonstrated earlier that the static stress for a unitary volumic acceleration must be identical to the sum of the effective stress modes divided by the square of their pulsation. This was verified on the test case and the result is shown on figure 8.1. <u>Figure 8.1</u>: Comparison of effective stress modes with static stresses #### 8.1.4. Stresses modes combination Using the modal stress vectors given by FE modal analysis, we can derive the effective stress vectors. The addition of all vectors with their adequate multiplicative coefficient would lead to the exact solution if the modes were correctly estimated (which is not the case in FEM). It was seen that, at the first eigenfrequency, the first mode represents almost all the total maximum stress. At the second frequency, the second mode is dominant and at low frequency, several modes are needed to reach the correct value. | Frequency | Exact solution | Mode
1 | Mode1+
Mode2 | M1+M2+
Mode3 | |-----------|----------------|-----------|-----------------|-----------------| | 20 Hz | 4.766 | 4.251 | 4.627 | 4.707 | | 187 Hz | 105.1 | 105.1 | 105.1 | 105.1 | | 1165 Hz | 9.409 | 0.103 | 9.406 | 9.409 | Table 8.2: Maximum stresses (MPa) in the beam. 8.1.5. Static constraint and addition of stress modes. It was shown in paragraph 6.1 that computing the static stress with a unitary volumic acceleration could improve the results of the computation. This was applied to our test model. On this simple model, the difference is not obvious but it was observed that the errors made on higher modes are suppressed. | Frequency | Exact | Static | St+ M1 | St+M1 | |-----------|----------|--------|--------|-------| | | solution | stress | | +M2 | | 20 Hz | 4.766 | 4.717 | 4.766 | 4.766 | | 187 Hz | 105.1 | 4.717 | 105.1 | 105.1 | | 1165 Hz | 9.409 | 4.717 | 0.404 | 9.409 | <u>Table 8.3</u>: Maximum stress (MPa) in the beam. ## 8.2. Random excitation ## 8.2.1. Elastic energy The use of the simple elastic energy formula leads to a RMS maximum stress of 23.5 MPa for the lateral direction. # 8.2.2. Stress modes combination Formula (7.5) and (7.6) were used to evaluate the RMS stresses in the beam. The following values were observed for lateral and for axial excitation. | | Equation (7.5) | Equation (7.6) | |---------|----------------|----------------| | Lateral | 19.23 MPa | N.A. | | Axial | N.A. | 0.118 MPa | Table 8.4: Results for random excitation. ## 9. TESTS ON OMC LENS BARREL The Optical Monitoring Camera (OMC) is an instrument that will be mounted on the INTEGRAL spacecraft. The optical subsystem of the camera, which consists in a 6-lens system, is to be designed according the base-driven vibration specification. The lenses are mounted in a titanium lens barrel. The goal of the study is to verify that the maximum stress is lower than the elastic limit of titanium during qualification vibration test The simple deformation energy formula gives a mean value of 0.99 MPa for sinus vibration (100 Hz) and 2.41 MPa RMS for random vibration. Using the other methods developed in this article, the maximum estimated stress is 6.198 MPa for sine test and 27.7 MPa RMS for random vibration what is lower than the elastic limit. ## 10. CONCLUSIONS This paper presents a new efficient way to evaluate the effects of mechanical tests on equipments mounted on vibration machines in both sine and random tests. It only requires a standard modal FE analysis and a single static FE analysis. The conditions required to truncate the modal series are discussed and an appropriate formulation is proposed to reduce the number of modes to include in the analysis. This was tested on a simple model (cantilever beam) and than applied on the OMC optical subsystem. ## 11. AKNOWLEDGMENTS The structural design of the OMC Optical System was performed by DSS/OIP (B). FE analyses were conducted by Janssen Engineering SA. All the activities on the OMC Optical Subsystem are funded by the Belgian OSTC and managed by Centre Spatial de Liège. # 12. REFERENCES - [1] A. Girard, Réponse des structures à un environnement basse fréquence. Note technique du CNES - [2] J.F. Imbert, A. Mamode, La masse effective, un concept important pour la caractérisation dynamique des structures avec excitation de la base. Mécanique, matériaux, électricité, pp 342-354, Juillet 1978. - [3] Roark's Formulas for Stress & Strains, 6th Edition, Mc Graw Hill. - [4] Dynamique d'une expérience spatiale: analyses et vérification., J.M. Defise. 3ème Congrès National Belge de Mécanique Théorique et Appliquée, pp 253-256, Université de Liège, 1994 - [5] *OMC Optical System finite element analysis*, Janssen Engineering, 01/98/OIP, January 1998.